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Yangian Realization for Dirac Oscillator
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We investigate the realizations of Yangian algebra for a Dirac oscillator. Applying the
representation theory of Y (sl(2)) to Dirac oscillator, shift operators for different energy
levels for this system are obtained.
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1. INTRODUCTION

In the 1960s, Yang (1967) and Baxter (1982) separately established Quan-
tum Yang–Baxter Equation (For short, QYBE). Since then the investigations on
quantum integrable models have been greatly promoted. It is worth mentioning
especially that the Yangian and quantum algebra, established by Drinfeld (1985,
1986, 1988) in 1985, offer a cogent mathematical method to study the symmetry of
quantum integrable models in Physics. After several decades, a great deal of math-
ematical ingenuity has gone into solutions and symmetries of quantum integrable
models, giving new physical understanding and theoretical results (Ge et al., 1999,
2000; Ba et al., 2001). In connection with the symmetries we are impressed with
Yangian algebra. There is a close relationship between many-body problems and
Yangian algebra, which describes non-linear quantum space and is related to RTT
relation that describes a large number of integrable models.

Dirac oscillator is one kind of Dirac equation which is linear in both momen-
tum and coordinates. In the non-relativistic limit, the equaiton corresponds a three-
dimensional isotropic harmonic oscillator with a strong spin–orbit coupling term,
hence the name Dirac oscillator (Moshinsky and Szczepaniak, 1989). The physical
interpretation of Dirac oscillator is an anomalous chromomagnetic dipole inter-
acting with a particular chromoelectric field. Itô et al. (1967) pointed out that the
Dirac oscillator can be solved exactly. In 1971, its spectrum was found to present
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usual accidental degeneracies (Cook, 1971). Quesne and Moshinsky (1990) ex-
plained the degeneracies of the spectrum by a standard symmetry Lie algebra. In
the meanwhile, Delange (1991) gave the shift operators, for the Hamiltonian of the
equation using operator methods to Dirac equation of Moshinsky and Szczepaniak
(1989). As we know, Yangian cannot only describe the symmetry properties, but
also give shift operators for energy. Actually, Yangian is much larger than Lie
algebra; the shift operators given by Yangian are quite different from that offered
by Lie algebra. The difference can be shown in the following sense; the generators
of Lie algebra only shift the spectrum in the same energy level, however, Yangian
could connect states of different energy power. It seems that we can obtain the
shift operators for Dirac oscillator by the method of Yangian.

In this paper, we would like to find the shift operators based on Yangian
algebra. In Section 2, we review some properties of Dirac oscillator and give
Yangian realization for the system. We use Yangian generators to obtain the shift
operators for energy in Section 3. Then we compare our shift operators with the
results of Delange (1991). We find another Yangian realization for Dirac oscillator
in Section 4, based on the symmetry Lie algebra for Dirac oscillaotr. Consequently,
one set of shift operators other than the above ones are given. Using these two
sets of shift operators, we are able to transfer the states freely. In Section 5, we
summarize our results.

2. DIRAC OSCILLATOR AND ITS YANGIAN REALIZATION

Dirac oscillator is a Dirac equation

ih
∂

∂t
|ϕ〉 = H |ϕ〉 (1)

with the Hamiltonian specified as the following:

H = c�α · ( �p − im0ωβ�r) + m0c
2β (2)

where �α = ( 0 �σ
�σ 0 ) and �σ are Pauli operators, β = ( 1 0

0 −1 ), m0 is rest mass and
ω is the frequency of the oscillator. The solution of the equation can be written

as |ϕ〉 = ( ϕ1
ϕ2

)e−i E

h
t with the following equations satisfied in the non-relativistic

limit,

H1ϕ1 = λϕ1

H2ϕ2 = λϕ2

H1 = 1

2m0ωh
p2 + m0ω

2h
r2 − 2 �L · �S

h2 − 3

2
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H2 = 1

2m0ωh
p2 + m0ω

2h
r2 + 2 �L · �S

h2 + 3

2

λ = E2 − m2
0c

4

2m0ωhc2
(3)

where ϕ1 and ϕ2 are time-independent components. Such Hamiltonians H1 and
H2 respresent standard harmonic oscillator plus a very strong spin-orbit coupling
and consequently, the system is referred as Dirac oscillator. The energy spectrum
is given by

λNij = N −
[
j (j + 1) − l(l + 1) − 3

4

]
(4)

Here, N denotes the eigenvalue of N̂ = 1
2m0ωh

p2 + m0ω

2h
r2 − 3

2 and runs over
0, 1, 2, . . . , l and j are the orbital and total angular momentum quantum num-
bers respectively. The Hamiltonian Equation (2) commutes with the total an-

gular momentum operator �M = �L + �S and the operator K = (
K 0
0 −K ) with

K = 2 �L· �S
h2 + 1.

A Yangian is formed by a set { �I , �J } obeying the commutation relations
Drinfeld (1985),

[Iα, Iβ ] = cαβγ Iγ , [Iα, Jβ ] = cαβγ Jγ

[Jα, [Jβ, Iγ ]] − [Iα, [Jβ, Jγ ]] = h2aαβγλµν

∑
λ �=µ �=ν

IλIµIν

[[[Jα, Jβ], [Iσ , Jτ ]] + [[Jσ , Jτ ], [Iα, Jβ ]]] = h2(aαβγλµνcστγ − aστγ λµνcαβγ )

×
∑

λ �=µ �=ν

IλIµIν (5)

where h is an arbitrary constant and aαβγλµν = 1
4!cαλσ cβµτ cγ νρcστρ,

(α, β, γ, λ, µ, ν, σ, ρ, τ = 1, 2, 3). With I± = I1 ± iI2 and J± = J1 ± iJ2.
Equation (5) can be written as

[I3, I±] = ±I±, [I+, I−] = 2I3

[I3, J±] = [J3, I±] = ±J±, [I+, J−] = [J+, I−] = 2J3

[I±, [J3, J±]] = 1

4!
h2I±(I3J± − J3I±) (6)

There are many physical realizations of Y (sl(2)) = Y ( �I , �J ) satisfying Equation
(6). The algebraic meaning of Y (sl(2)) is clear that it contains sl(2) as shown by
the first line of Equation (6) as a subalgebra. If we have two operators �E and �B of



1220 Wu and Xue

E(3) which satisfy

[Eα,Eβ ] = iεαβγ Eγ

[Eα,Eβ ] = iεαβγ Bγ , α, β, γ = 1, 2, 3

[Bα,Bβ ] = 0 (7)

then it is easy to verify that the following { �I , �J }
�I = �E, �J = �I 2 �B (8)

form a Yangian algebra and for a Dirac oscillator, we obtain

�I = �M = �L + �S, �J = �M2( �p + c�r) (9)

where c is an arbitrary constant. Such definations satisfy Y(sl(2)) algebra, namely
we get one kind of realization of Yangian for Dirac oscillator.

3. SHIFT OPERATORS FOR DIRAC OSCILLATOR

If we have such a relation

[H, f ( �J )] = bf ( �J ) (10)

where f ( �J ) is a function of �J and b is an arbitrary constant, then f ( �J ) can act as
shift operators for the Hamiltonian.

For c = im0ω, we have

J 2 = ( �p+im0ω�r)2(M4 + 2M2)

J †2 = ( �p−im0ω�r)2(M4 + 2M2) (11)

where �J † is conjugate operator of �J . After calculations, we have the commutation
relations between H1,H2, and J 2, J †2

[H1, J
2] = 2J 2, [H2, J

2] = 2J 2

[H1, J
†2] = −2J †2, [H2, J

†2] = −2J †2 (12)

Thus, these two operators J 2 and J †2 are the ones acting as the shift operators
for H1 and H2. To be concrete, J 2 is the operator which adds 2 to eigenvalue λ, J †2

is the operator which subtracts 2 from eigenvalue λ. By further calculations, we
have

[L2, J 2] = 0, [L2, J †2] = 0

[M2, J 2] = 0, [M2, J †2] = 0

[M3, J
2] = 0, [M3, J

†2] = 0 (13)



Yangian Realization for Dirac Oscillator 1221

which means that the two shift operators change the eigenvalue of Hamiltonian
by changing the value of N, not affecting the quantum numbers l, j, and m.

We can rewrite the expressions of the shift operators in terms of H1,H2, and
K:

J 2 = 2m0ωh

[
i

2h
(�r · �p + �p · �r) − m0ωr2

h
H1 + K + 1

2

]
(M4 + 2M2)

= 2m0ωh

[
i

2h
(�r · �p + �p · �r) − m0ωr2

h
H2 − K − 1

2

]
(M4 + 2M2)

J †2 = 2m0ωh

[−i

2h
(�r · �p + �p · �r) − m0ωr2

h
H1 + K + 1

2

]
(M4 + 2M2)

= 2m0ωh

[−i

2h
(�r · �p + �p · �r) − m0ωr2

h
H2 − K − 1

2

]
(M4 + 2M2)

(14)

Suppose we perform J 2 and J †2 on ϕ1 and ϕ2 respectively, we have

J 2ϕ1 = 2m0ωh[j 2(j + 1)2 + 2j (j + 1)]

[
i

2h
(�r · �p + �p · �r)

− m0ωr2

h
+ λ + k + 1

2

]
ϕ1

J 2ϕ2 = 2m0ωh[j 2(j + 1)2 + 2j (j + 1)]

[
i

2h
(�r · �p + �p · �r)

− m0ωr2

h
+ λ + k + 1

2

]
ϕ2

J †2ϕ1 = 2m0ωh[j 2(j + 1)2 + 2j (j + 1)]

[−i

2h
(�r · �p + �p · �r)

− m0ωr2

h
+ λ + k + 1

2

]
ϕ1

J †2ϕ2 = 2m0ωh[j 2(j + 1)2 + 2j (j + 1)]

[−i

2h
(�r · �p + �p · �r)

− m0ωr2

h
+ λ + k + 1

2

]
ϕ2 (15)

where j (j + 1) is the eigenvalue of M2 and k denotes the Dirac quantum number
which is the eigenvalue of K.
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Let us mention the results in Delange (1991)

Q+
λ ϕ1 =

[
i

2h
(�r · �p + �p · �r) − m0ωr2

h
+ λ + k + 1

2

]
ϕ1

Q+
λ ϕ2 =

[
i

2h
(�r · �p + �p · �r) − m0ωr2

h
+ λ + k − 1

2

]
ϕ2

Q−
λ ϕ1 =

[−i

2h
(�r · �p + �p · �r) − m0ωr2

h
+ λ + k + 1

2

]
ϕ1

Q−
λ ϕ2 =

[−i

2h
(�r · �p + �p · �r) − m0ωr2

h
+ λ + k − 1

2

]
ϕ2 (16)

Q±
λ are shift operators for energy, Q±

λ |ϕ1,2〉 ∝ |ϕ1,2 ± 2〉. Compare
Equation (15) with Equation (16), we have

Q+
λ = 1

2m0ωh[j 2(j + 1)2 + 2j (j + 1)]
J 2

Q−
λ = 1

2m0ωh[j 2(j + 1)2 + 2j (j + 1)]
J †2 (17)

It was shown in Delange (1991) that Q±
λ are scalar operators with respect

to orbit angular momentum �L and total angular momentum �M . They do not
affect the quantum numbers j, l, m, k. Obviously, there are good correspondences
between Q+

λ and J 2,Q−
λ and J †2. The meaning of the letter is to reconsider the

problem of shift operators from the view of Yangian, giving a new explanation
of Q±

λ which are rooted in Yangian algebra. It is an interesting result. Usually,
the generators of Yangian, I±, I3, and J±, J3, combined together to act as shift
operators for energy. Now we obtain the square of �J which can also be used as shift
operators.

4. ANOTHER YANGIAN REALIZATION

In their 1990 paper, Quesne and Moshinsky (1990) proved that the sym-
metry Lie algebra of Dirac oscillator is SO(4) ⊕ SO(3, 1). They restricted their
paper to the eqation H1ϕ1 = λϕ1. For convenience, the Hilbert space H spanned
by the eigenfunction ϕ1 is divided into two subspaces H+ and H−, containing
eigenfunctions with l = j + 1

2 and l = j − 1
2 respectively. SO(4) accounts for the

finite-degenerate levels in H+, while SO(3, 1) accounts for the infinite-degenerate
levels in H−. Turn our attention to the subspace H+, the generators of SO(4) are

�D = P (+) �MP (+)
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�A = P (+) 1

4
[( �M + 2)−1(H1 + 2 �M + 2)1/2 �F + H1 �M

+ �G(H1 + 2 �M + 2)1/2( �M + 2)−1]P (+) (18)

Here, P (+) is the projection operator on H+, �M = [M2 + 1
4 ]1/2 − 1

2 , the compo-
nents Fq and Gq (q = −1, 0, 1) of �F and �G are

Fq = ηq( �N − �L) − (�η · �η)ξq, Gq = (−1)q(F−q)† (19)

where �L = [L2 + 1
4 ]1/2 − 1

2 , ηq and ξq are creation and annhilation operators for
Dirac oscillator.

Introduce two vectors

�I ′ = �D, �J ′ = h

4i
�D × �A + F �D (20)

where h is an arbitrary constant and [F, �D] = [F, �A] = 0. It has been shown
that such defined { �I ′, �J ′} also form a Y (sl(2)) (Ge and Xue, 1999), namely, this
is another realization of Yangian for Dirac oscillator. For such kind of Yangian
realization, one set of shift operators for the Hamiltonian were given (Ge and Xue,
1999)

[I ′2,Oε
α] = (fε + 4)Oε

α, α = ±, 3[
I ′

3,O
ε
±
] = ±Oε

±,
[
I ′

3,O
ε
3

] = 0, ε = ± (21)

where

Oε
3 (f ) = I ′

+J ′
− − I ′

−J ′
+ + fεJ

′
3 − 4

4 + fε

( �I ′ · �J ′)I ′
3

Oε
±(f ) = ∓2(I ′

±J ′
3 − I ′

3J
′
±) + fεJ

′
± − 4

4 + fε

( �I ′ · �J ′)I ′
± (22)

when f+ = 2(j − 1), f− = −2(j + 2),Oε
α shift the quantum number j by 1. And

Oε
3 and Oε

± differ in the sense that Oε
3 do not change the eigenvalue of I ′

3, namely,
m, while Oε

± are still the shift operators for M3 in the mean time. Because the
generators �I ′ and �J ′ commute with the Hamiltonian, we have[

H1,O
ε
α

] = 0 (23)

That is to say that Oε
α are shift operators among different quantum states in the

same energy level.
In Fig. 1, the actions of J 2, J †2 and O±

3,± have been shown. Here we restrict
our attention to H+. The similiar results can also be given in the other subspace
H−. One thing different is that we should use SO(3, 1) generators to get a new
set of { �I , �J } and consequently, new shift operators O±

3,±.
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1
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(2, 2)

(5, 1)

(3, 1)

(1, 1)

      
2

3=j     )
2

1
,

2

3
( ±±=m

Denote the action of
+
−

++
+ OOO ,, 3

Denote the action of
−
+

−−
− OOO ,, 3

Denote the action of
22 , JJ +

Fig. 1. Shift operators J 2, J †2 and O±
3,± for the Hamiltonian.

Let us mention that there is a kind of realization for Dirac oscillator other
than the above two kinds (Ge and Xue, 1999). Choose

�I ′′ = �L + �S, �J ′′ = �L × �S (24)

and hence O ′′±
3 and O ′′±

± are given as

O ′′±
3 = I ′′

+J ′′
− − I ′′

−J ′′
+ + f ′′

±J ′′
3 − 4

4 + f ′′±
( �I ′′ · �J ′′)I ′′

3

O ′′±
± = ∓2(I ′′

±J ′′
3 − I ′′

3 J ′′
±) + f ′′

±J ′′
± − 4

4 + f ′′±
( �I ′′ · �J ′′)I ′′

± (25)

In this case, �I ′′ · �J ′′ = 0. When f ′′
+ = 2(j − 1), f ′′

− = −2(j + 2),O ′′±
3,± change

the quantum number j to j + 1. The transfer of states in different subspaces H+
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and H− can be realized by O ′′±
3,±. Thus, together with these shift operators, it is

possible to connect the states in the whole Hilbert space.

5. CONCLUSION

In conclusion, we start from the theory of Yangian, investigate the Yangian
realizations for Dirac oscillator. Based on the generators of Yangian, we obtain
shift operators for the Hamiltonian of Dirac oscillator. By two different sets of
{ �I , �J }, we derive shift operators for different energy levels, J 2, J †2, and the ones
for the same energy level O±

3,±, respectively. In the former case, the results we got
are perfectly in accordance with the shift operators (Delange, 1991). Expressing
Q±

λ in terms of Yangian generators, we reconsider the problem of shift operators
from the view of Yangian, give a new explanation of Q±

λ which are rooted in
Yangian algebra. Combining these two sets of shift operators, we enable the
transfer among the states both in the same and different energy levels possible.
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